Name:	per:
-------	------

Worksheet- Reaction Rates

 $C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 H_2O(g) + 6 CO_2(g)$ Use this reaction for the questions below:

- 1. What happens to the concentrations of:
 - a. $C_6H_{12}O_6 & O_2$ as the reaction proceeds \rightarrow ?
- b. $H_2O + CO_2$ as the reaction proceeds \rightarrow ?
- 2. According to the collision theory, what $\underline{3}$ circumstances are needed for $C_6H_{12}O_6$ & O_2 to react?
- 3. What is the activation energy for a chemical reaction?
- 4. Use the equation & the collision theory to explain:

$$C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 H_2O(g) + 6 CO_2(g)$$

	Change in condition:	Does this <u>increase</u> or <u>decrease</u> the rate of reaction?	Explain why
α.	<u>Increasing the temperature</u>	Ex: Increases (speeds up)	Ex: Molecules move faster & collide more = Increased rxn rate
b.	Increasing the concentration of $C_6H_{12}O_6$		
c.	Decreasing the concentration of O2		
d.	<u>Increase the surface area</u> by chewing up food in your mouth		
e.	<u>Decreasing</u> the temperature		
f.	Increasing the pressure in the container		
g.	Decreasing the concentration of H2O		
h.	<u>Increasing the volume</u> of the container the reaction occurs in		-
i.	<u>Increasing the concentration</u> of CO ₂		
j.	<u>Using a catalyst</u> (like salivary amylase)		

- 5. On the accompanying energy diagram, label the following terms:
 - a. reactants
- b. products c. activation energy
- 6. On the graph to the right, draw and label what this diagram would look like if a catalyst was added to the reaction.
- 7. Graph reading
 - a. How much energy (#) do the reactants have?
 - b. How much energy (#) do the products have?
 - c. How much energy (#) is required to activate this un-catalyzed reaction?
 - d. Is this reaction endothermic or exothermic? How do you know?

